10th Annual Winter q-bio Meeting Abstract Submission Guidelines

Following the guidelines below, abstracts should be submitted as .pdf files [Lastname-Fistname.pdf] via the online submission form located at http://www.w-qbio.org/submit-abstract/.

TALK ABSTRACT DEADLINE: 11:59 PM PST on Tuesday November 22nd.

In order to present a poster or give a talk you must also register for the conference. Registration information can be found at http://w-qbio.org/register.

Abstract Guidelines:

- 1) Abstract Title: Arial, Bold, 12 pt., centered. Maximum of 150 characters, including spaces.
- 2) Abstract Authors: Arial, 12 pt., centered. Include, all authors full name and affiliation. Use superscript to indicate multiple or varying affiliations.
- 3) Authors Address(es): Arial, 11 pt., justified.
- 4) TEXT ONLY abstract: Arial, 12 pt., justified. Maximum of 500 words.

PROPERLY FORMATTED ABSTRACT EXAMPLE:

NFkB Signaling in a Dynamic Microfluidic Environment

Martin Kolnik^{1,5,*}, Jangir Selimkhanov^{1,5,*}, Alex Hoffmann^{2,5}, Jeff Hasty^{1,3,4,5}, and Lev S. Tsimring^{4,5}

- ¹ Department of Bioengineering, UCSD, 9500 Gilman Drive, La Jolla, CA 92093
- ² Department of Chemistry and Biochemistry, UCSD, La Jolla, CA
- ³ Molecular Biology Section, Division of Biological Sciences, UCSD, La Jolla, CA
- ⁴ BioCircuits Institute, UCSD, La Jolla, CA
- ⁵ The San Diego Center for Systems Biology, La Jolla, CA

Nuclear factor kappa B (NF κ B) is a well-studied global regulator of gene expression that coordinates the cellular response to a variety of external stimuli such as tumor necrosis factor alpha (TNF α), which is critical in inflammation and immunity. NF κ B is normally sequestered in the cytoplasm but it translocates into the nucleus upon TNF α stimulation and acts to regulate a variety of downstream genes before it is shuttled out of the nucleus back into the cytoplasm. Oscillation dynamics of NF κ B shuttling have been implicated in the functional dynamics of subsequent gene expression but it remains to be determined to what extent dynamic stimulation of the system affects nuclear-cytoplasmic NF κ B shuttling. To this end, we have developed a microfluidic cell culture device to stimulate mammalian cells with any desired time-varying waveform of biochemical inducer while maintaining the cells in a zero-shear environment. By delivering TNF α in a ramp versus step waveform we are able to gain insight into the dynamics of NF κ B activation. Using our recently developed automated tracking of individual cells, we can gather relevant statistical data on the NF κ B response dynamics. Our preliminary results indicate that the strength and timing of initial NF κ B response is variable between cells, which we can observe due to the dynamic ramp TNF α activation experiments. This variability would be difficult to detect in devices where only static delivery of TNF α is possible.

^{*} Equal contributions